Review
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpfdfmeaq7fOJrCMtZrKnedB_KErDmc2NZJgiC79tbb8yC8DU_8HCdyPZuL_XGbv2KLwEeq0Z8DfczC6oXacJXLZu4w3AEATjHmrNcefLs1kIc79nmQzXoAWDafFkwz30mcVPUfTQmAc7L/s320/Untitled.png)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhtBgEVRgXqQ8o5IMsBelDUjCeTDYW9_0OlcN9qilVhp7_QiDUKx96P0zaS0o9XK172vs6tAyagcchxkHUhwWUpCx4lD8aptlL48RZbeiH2dgJmQ8ZhIkTe-56agqb2m-DQ0czirgvJ4uEf/s320/Untitled.png)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgE-jVB-TrCuqfvQWAD9FPQnLFb6vqDi32Q_Y3EbczTsYqCnrR2y6j4GJ1QwyFKTKzj1e9UGLpuQ-rEtafN-7iD51biy6nwpPsDEyzwuZCAu5VkYZ0V7OvXtoWFWHevd44iA-Rs1QfvAQNv/s320/Untitled.png)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh9mnfNKypa6X22XofRhcB4Vf-DOgFvThi8YLXriONr5ekTjXa7J_a7btjBDVSgG3IZDy-PP9Q7F-1Z686Dh634y-CLFhZP8pA3JAlnoOy6Nq0qiDgHOkM1Q4eJn2ZDMuhIXUc-r2GihvVT/s320/Untitled.png)
(+2) x (+3)= 6 ![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEji7Bk8x5r8y7-HtOcYD0kMiWjXxxA361QlGV-ZO5tB1HWN0vxIO7cJ1ShGPMmSzEerDe0TN7fpNuYT8aS5k3-AADrdtciuifbOBIU8Fckh4zLE-NX4exaeOEoD2Xz8w8uoXze2VXY0GcTS/s320/Untitled.png)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjv77IMvZITBYP8mcLS5TtVPxuSf0Vm30qsHxpi62-azgqVt6fI8PLDLZC3pkN6boRknFwH8RSdz3OMrLOR7R7e_C_YPlnd2f5S-dd8FUcnd_o8h9bC-YojPI9VYGABLr532jNE3eKfC7Vl/s320/Untitled.png)
- zero pair -a positive # and a negative # combined make a zero pair.
(Eg. 1-1=0)
- number lines can be used.
- "When subtracting something th
at isn't there, use a zero pair." This saying helps when subtracting integers."
- Gr. 7 way:
(+7) + (-3) =
positive 7 and negative 3.
have 7 and owe 3.
+7 + -3
Gr. 8 way:
positive 7 and negative 3.
have 7 and owe 3.
+7 + -3
Gr. 8 way:
7 - 3 = 4
-Stared Homework Questions:
-3 - (-7) = 4
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhpfdfmeaq7fOJrCMtZrKnedB_KErDmc2NZJgiC79tbb8yC8DU_8HCdyPZuL_XGbv2KLwEeq0Z8DfczC6oXacJXLZu4w3AEATjHmrNcefLs1kIc79nmQzXoAWDafFkwz30mcVPUfTQmAc7L/s320/Untitled.png)
-3 - 7 = -10
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhtBgEVRgXqQ8o5IMsBelDUjCeTDYW9_0OlcN9qilVhp7_QiDUKx96P0zaS0o9XK172vs6tAyagcchxkHUhwWUpCx4lD8aptlL48RZbeiH2dgJmQ8ZhIkTe-56agqb2m-DQ0czirgvJ4uEf/s320/Untitled.png)
3 - 7 = -4
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgE-jVB-TrCuqfvQWAD9FPQnLFb6vqDi32Q_Y3EbczTsYqCnrR2y6j4GJ1QwyFKTKzj1e9UGLpuQ-rEtafN-7iD51biy6nwpPsDEyzwuZCAu5VkYZ0V7OvXtoWFWHevd44iA-Rs1QfvAQNv/s320/Untitled.png)
3 + 7 = 10
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgAvxWEJW71VFyMLfzQIrlRPiEzNvHwwlxbfB2t1vxTbx5XSCxeRw2GVX7PJaTtML-DH8ufSCWrjqwfhpIWg-fKVORzKytj6mlSumRBfzxTVC4ixx_XxNCiZGvGwXZSsi-oL06KVOBieW43/s320/Untitled+2.png)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgAvxWEJW71VFyMLfzQIrlRPiEzNvHwwlxbfB2t1vxTbx5XSCxeRw2GVX7PJaTtML-DH8ufSCWrjqwfhpIWg-fKVORzKytj6mlSumRBfzxTVC4ixx_XxNCiZGvGwXZSsi-oL06KVOBieW43/s320/Untitled+2.png)
-3 + 7 = 4
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh9mnfNKypa6X22XofRhcB4Vf-DOgFvThi8YLXriONr5ekTjXa7J_a7btjBDVSgG3IZDy-PP9Q7F-1Z686Dh634y-CLFhZP8pA3JAlnoOy6Nq0qiDgHOkM1Q4eJn2ZDMuhIXUc-r2GihvVT/s320/Untitled.png)
Chapter 2: Multiplying Integers
- Sign Rule (negative signs)
Whenever you have an odd number of negative factors the product will be a NEGATIVE number, and when you have an even number of negative factors the product will be a POSITIVE number.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEji7Bk8x5r8y7-HtOcYD0kMiWjXxxA361QlGV-ZO5tB1HWN0vxIO7cJ1ShGPMmSzEerDe0TN7fpNuYT8aS5k3-AADrdtciuifbOBIU8Fckh4zLE-NX4exaeOEoD2Xz8w8uoXze2VXY0GcTS/s320/Untitled.png)
(+2) x (-3)= -6
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjv77IMvZITBYP8mcLS5TtVPxuSf0Vm30qsHxpi62-azgqVt6fI8PLDLZC3pkN6boRknFwH8RSdz3OMrLOR7R7e_C_YPlnd2f5S-dd8FUcnd_o8h9bC-YojPI9VYGABLr532jNE3eKfC7Vl/s320/Untitled.png)
(-2) x (+3)= -6
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIksCVG1rQzIcNkak7cvc41znW90Lm7tP_zkXNt0CT1YztoR-fBrhbN58nP5AsB65e69wnJrsn6VcjKWBOcGIICE06-EyRgTKdn02_RCBk4tWhPc98Q5YBSAr_DV6xQ0Kbhn0KmmLc-EgE/s320/Untitled.png)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhUcK6Sm8sRu6F-1NmPP8RyAPPxoakuIqg9XdbsK6d-CIWXlS3eYchc3rr3zHRBjnpsNjuORt5OHK7e-SAqb5M_Z2KdmRjFs_FuzxlVz6lNflvzJBW5tKslBT71tM7gNhzGGA6_4mVjxCWd/s320/Untitled.png)
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjIksCVG1rQzIcNkak7cvc41znW90Lm7tP_zkXNt0CT1YztoR-fBrhbN58nP5AsB65e69wnJrsn6VcjKWBOcGIICE06-EyRgTKdn02_RCBk4tWhPc98Q5YBSAr_DV6xQ0Kbhn0KmmLc-EgE/s320/Untitled.png)
(-2) x (-3)= 6
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhUcK6Sm8sRu6F-1NmPP8RyAPPxoakuIqg9XdbsK6d-CIWXlS3eYchc3rr3zHRBjnpsNjuORt5OHK7e-SAqb5M_Z2KdmRjFs_FuzxlVz6lNflvzJBW5tKslBT71tM7gNhzGGA6_4mVjxCWd/s320/Untitled.png)
Chapter 3: Dividing Integers
Partitive Division: means how many groups there are and how many integers are in that group
6÷ 2=3
means in partitive division-
How many groups of +2 are in 6?
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgWR94gj4yvq-Cf0vPq2rlRGIOLFFjd6WfhNAK7jedVcMtEcXxD3n_pnqmC_1Y4SMJ9frGtPR5u1AxKIRE7fDByc3dk5VUxyZyR7eSd2-K18VfTDwcDXBEOIx2-QgeTx-1OC_wApVS0FLHE/s320/Untitled.png)
-6 ÷ (-2)= 3
means in partitive division-
How many groups of +2 are in 6?
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEgWR94gj4yvq-Cf0vPq2rlRGIOLFFjd6WfhNAK7jedVcMtEcXxD3n_pnqmC_1Y4SMJ9frGtPR5u1AxKIRE7fDByc3dk5VUxyZyR7eSd2-K18VfTDwcDXBEOIx2-QgeTx-1OC_wApVS0FLHE/s320/Untitled.png)
-6 ÷ (-2)= 3
means in partitive division-
How many groups of -2 are in -6?
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiTQ02Vo1mmYln79r5X-uwaB23bm97oX_CpBhlF-_lGQ6ElGUcGNmRdTkmfHPNMcSxARZpxTPOM8HtF3E4_sr4clrQoMs2C7NWRXEV6qPxD-XgB6nLQBHQ5_fsIeWpK6TqaKJIoVFQRnw1S/s320/Untitled.png)
Quotative Division: means sharing equally so that every group has the same amount of integers
(-6) ÷ 2 = -3
Share (-6) with 2 groups.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh7N1VrAmpQYDgio2AaRLIV1jDl0PVnhDQRniybS7aNvfD1yVQ8iTtL-VY1fEAuCHqZboDEQABZJFsUv0y2idCx1gXjw7eizZtLRnjW7lpMFnZ_VW5EgVwSWib2i0Nih1I3hFnjDuZLi0Kd/s320/Untitled.png)
Multiplicative Division
-6 ÷ -2 = 3
-3 x -2 = 6
-2 x -3 = 6
-6 ÷ 2 = -3
2 x -3 = -6
-3 x 2 = -6
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEiTQ02Vo1mmYln79r5X-uwaB23bm97oX_CpBhlF-_lGQ6ElGUcGNmRdTkmfHPNMcSxARZpxTPOM8HtF3E4_sr4clrQoMs2C7NWRXEV6qPxD-XgB6nLQBHQ5_fsIeWpK6TqaKJIoVFQRnw1S/s320/Untitled.png)
Quotative Division: means sharing equally so that every group has the same amount of integers
(-6) ÷ 2 = -3
Share (-6) with 2 groups.
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh7N1VrAmpQYDgio2AaRLIV1jDl0PVnhDQRniybS7aNvfD1yVQ8iTtL-VY1fEAuCHqZboDEQABZJFsUv0y2idCx1gXjw7eizZtLRnjW7lpMFnZ_VW5EgVwSWib2i0Nih1I3hFnjDuZLi0Kd/s320/Untitled.png)
Multiplicative Division
-6 ÷ -2 = 3
-3 x -2 = 6
-2 x -3 = 6
-6 ÷ 2 = -3
2 x -3 = -6
-3 x 2 = -6
(+5) x (-3) + (-6) ÷ (+3)=
[(+5) x (-3)] + [(-6) ÷ (+3)]=
(-15) + (-18) = +33
Chapter 4: Order Of Operations With Integers
BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction
(+10) x (-5) + (+6) ÷ (+3)
1. add square brackets
[(+5) x (-3)] + [(-6) ÷ (+3)]=
(-15) + (-18) = +33
Chapter 4: Order Of Operations With Integers
BEDMAS: Brackets, Exponents, Division, Multiplication, Addition, Subtraction
(+10) x (-5) + (+6) ÷ (+3)
1. add square brackets
[(+10) x (-5)] + [(+6) - (+3)]
2. answer what's in the square brackets
[(+10) x (-5)] + (+6) - (+3)
-50 +
3. After the brackets you find the exponents
3. After the brackets you find the exponents
4. Then after exponents do the multiplication and division (answer left - right)
[(+10) x (-5)] + (+6) - (+3)
-50 +
-50 + 2
5. After the multiplication/ division then you do add and subtract (answer left - right)
6. Then you have your answer.
[(+10) x (-5)] + (+6) - (+3)
-50 +
-50 + 2
= -48
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.